Typ tekstu: Książka
Autor: Meissner Krzysztof
Tytuł: Klasyczna teoria pola
Rok: 2002
we wszystkich interesujących przypadkach lagranżjan zależy jawnie jedynie od zmiennych zależnych (pól i ich pochodnych).
Aby zobaczyć, co wynika z tej zasady, rozpatrzmy dwie blisko siebie leżące trajektorie różniące się o .x(t) (rys. 1). Działanie S będzie ekstremalne dla trajektorii xi, jeśli
Pierwszym warunkiem na ekstremum jest zatem znikanie całki zawierającej .x.
Ponieważ wariacja .x jest zupełnie dowolna (poza punktami początkowym i końcowym),

więc wariacja działania może znikać tylko wtedy, gdy dla wszystkich i
co jest równoważne drugiej zasadzie dynamiki.
Zajmijmy się teraz wyrażeniem brzegowym w (2.3). Istnieją dwa różne przypadki,
kiedy wyrażenie to znika. Pierwszy przypadek (który doprowadza
we wszystkich interesujących przypadkach lagranżjan zależy jawnie jedynie od zmiennych zależnych (pól i ich pochodnych). <br>Aby zobaczyć, co wynika z tej zasady, rozpatrzmy dwie blisko siebie leżące trajektorie różniące się o .x(t) (rys. 1). Działanie S będzie ekstremalne dla trajektorii xi, jeśli &lt;gap&gt;<br>Pierwszym warunkiem na ekstremum jest zatem znikanie całki zawierającej .x. <br>Ponieważ wariacja .x jest zupełnie dowolna (poza punktami początkowym i końcowym), <br>&lt;page nr=13&gt;<br>więc wariacja działania może znikać tylko wtedy, gdy dla wszystkich i <br>&lt;gap&gt; co jest równoważne drugiej zasadzie dynamiki. <br>Zajmijmy się teraz wyrażeniem brzegowym w (2.3). Istnieją dwa różne przypadki, <br>kiedy wyrażenie to znika. Pierwszy przypadek (który doprowadza
Przeglądaj słowniki
Przeglądaj Słownik języka polskiego
Przeglądaj Wielki słownik ortograficzny
Przeglądaj Słownik języka polskiego pod red. W. Doroszewskiego